Transition Dynamics of Frictional Granular Clusters

نویسندگان

  • Antoinette Tordesillas
  • David M. Walker
  • Gary Froyland
  • Jie Zhang
  • Robert P. Behringer
چکیده

Force chains, the primary load-bearing structures in dense granular materials, rearrange in response to applied stresses and strains. These self-organized grain columns rely on contacts from weakly stressed grains for lateral support to maintain and find new stable states. However, the dynamics associated with the regulation of the topology of contacts and strong-versus-weak forces through such contacts remains unclear. This study of local self-organization of frictional particles in a deforming dense granular material exploits a transition matrix to quantify preferred conformations and the most likely conformational transitions. It reveals favored cluster conformations reside in distinct stability states, reminiscent of “magic numbers” for molecular clusters. To support axial loads, force chains typically reside in more stable states of the stability landscape, preferring stabilizing truss-like, 3-cycle contact triangle topologies with neighboring grains. The most likely conformational transitions during force chain failure by buckling correspond to rearrangements among, or loss of, contacts which break the 3-cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition dynamics and magic-number-like behavior of frictional granular clusters.

Force chains, the primary load-bearing structures in dense granular materials, rearrange in response to applied stresses and strains. These self-organized grain columns rely on contacts from weakly stressed grains for lateral support to maintain and find new stable states. However, the dynamics associated with the regulation of the topology of contacts and strong versus weak forces through such...

متن کامل

Electrostatically driven granular media: phase transitions and coarsening

We report the experimental and theoretical study of electrostatically driven granular material. We show that the charged granular medium undergoes a hysteretic phase transition from the immobile condensed state (granular solid) to a fluidized dilated state (granular gas) with a changing applied electric field. In addition we observe a spontaneous precipitation of dense clusters from the gas pha...

متن کامل

Patterns and flow in frictional fluid dynamics

Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in...

متن کامل

Crossover from quasi-static to dense flow regime in compressed frictional granular media

Being ubiquitous in a large variety of geomaterials, granular assemblies play a crucial role in the mechanical stability of engineering and geophysical structures. For these applications, an accurate knowledge of the processes at the origin of shear localization, i.e. faulting, in frictional granular assemblies submitted to compressive loading is needed. Here we tackle this problem by performin...

متن کامل

Critical scaling near jamming transition for frictional granular particles.

The critical rheology of sheared frictional granular materials near jamming transition is numerically investigated. It is confirmed that there exists a true critical density which characterizes the onset of the yield stress and two fictitious critical densities which characterize the scaling laws of rheological properties. We find the existence of a hysteresis loop between two of the critical d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012